

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.17
105

ERROR CORRECTION IN EXTENDED ORTHOGONAL LATIN

SQUARE CODES USING SYNDROME FAULT DETECTION AND
MAJORITY LOGIC DECODING

Dr.Nikhil Raj 1, Dr. Om prakash2, Dr M. Thamarai3, Dr. Vaibhav A Meshram4, Dr.K. Srinivasulu5
1,2,3,4,5Professor, Dept. of ECE,MRCE, Hyderabad

Abstract:

Error correction codes (ECCs) are
commonly used to Protect memories from
errors. As multi-bit errors become more
frequent, single error correction codes are
not enough and more advanced ECCs are
needed. The use of advanced ECCs in
memories is, however, limited by their
decoding complexity. In this context, one-step
majority logic decodable (OS-MLD) codes
are an interesting option as the decoding is
simple and can be implemented with low
delay. Orthogonal Latin squares (OLS) codes
are OS-MLD and have been recently
considered to protect caches and memories.
The main advantage of OLS codes is that they
provide a wide range of choices for the block
size and the error correction capabilities. We
can also extend these codes to accommodate
more number of data bits thus reducing the
overhead. But most of the time all the words
in the memory are not error prone, but still
we try to decode them and waste clock cycles
on it. In this brief, a method is presented to
detect whether an error is present in the code
word and if present then only the correction
is done using majority logic decoding.

Keywords—Error correction codes
(ECCs), Extended Orthogonal Latin squares,
Syndrome fault detection (SFD), majority
logic decoding, and memory.

I. INTRODUCTION
To mitigate errors, error correction codes

(ECCs) are commonly used in memories [1].
Because of their simplicity, single error
correction codes that can correct one bit per

word are traditionally used [2]. Other codes that
can also correct double adjacent errors [3] or
double errors in general have also been studied
[4]. Codes that can correct more errors have a
larger impact on delay and power that can limit
their applicability to memory designs [5]. One
alternative to minimize those impacts is to use
codes that are one-step majority logic decodable
(OS- MLD). OS-MLD codes can be decoded
with low latency and are, therefore, attractive to
protect memories [6]. Several types of OS-MLD
codes have been proposed for memory
protection. One example is a type of Euclidean
geometry (EG) codes studied in [7] and [8].

EG codes provide a limited number of block
sizes and error correction capabilities. For
example, for double error correction (DEC),
only very small data block sizes (smaller than 16
bits) can be implemented. In addition, the error
correction capability for a block size is fixed and
cannot be adapted to the error rate. Another type
of code that is OSMLD is orthogonal Latin
squares (OLS) code [11]. OLS codes can be
implemented for a wide range of block sizes and
error correction capabilities. This flexibility and
the simple and fast decoding are the main
advantages of OLS codes. However, OLS codes
typically require more parity bits than other
codes to correct the same number of errors. In
some applications, this disadvantage is offset by
their modularity and the simple and low delay
decoding implementation (as OLS codes are
OS-MLD). For example, OLS codes have been
recently considered to protect memories [12],
caches [13], and interconnections [14].

The rest of this brief is organized as follows.
Section II provides an overview of OLS and

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.17
106

Extended OLS codes summarizing some of their
properties that are used in the rest of this paper.
Then, the proposed method for error detection
and correction is presented in Section III.
Section IV speaks of the results. Finally, the
conclusions are presented in Section V.

II. OLS and Extended OLS Codes
A Latin square of size m is an m × m matrix

that has permutations of the digits 0, 1, …, and m
− 1 in both its rows and columns [15].Two Latin
squares are said to be orthogonal if when they
are superimposed every ordered pair of
elements appears only once. OLS codes are
derived from OLS [11]. The block sizes for OLS
codes are k = m2 data bits and 2 tm parity bits,
where t is the number of errors that the code can
correct and m is an integer. For a given pair of
values of t and m, the corresponding OLS code
exists only if there are at least 2t OLS of size m.

The extended codes have the same number of
parity bits as the original OLS codes but a larger
number of data bits. Therefore, the relative
overhead is smaller. The derived codes can be
decoded using OS-MLD as the original OLS
codes. The decoding area and delay are also
similar. Therefore, the new codes can be an
interesting option to reduce the number of parity
bits required to implement multiple bit error
correction in memories or caches.

 Fig. 1. H matrix for the extended OLS codes
with k = 20 and t = 2.

In the above figure, if we remove the extra

added columns we get the Parity check matrix H
for the OLS codes with codes k

= 16 and t = 2.

From the figure, we can infer that every
column in the matrix is having exactly 4 one’s.
Thus 4 parity checksums can be formed which
can be majority decoded. Not all orthogonal
Latin squares can be used as OLS-MLD codes;
they need to satisfy 2 main conditions:

1) Each data bit participates in exactly 2t
parity check bits;

2) Each other data bit participates in at most
one of those parity check bits.

For an arbitrary value of k = m2, the H matrix
for a DEC OLS code is constructed as follows:

where I4m is the identity matrix of size 4m and

M1, M2, M3, and M 4 are the matrices of size m
× m2 derived from OLS of size m × m. In a
general case, for an OLS code that can correct t
errors, the parity check matrix is constructed
using 2t Mi matrices.
When m is small finding, such combinations is
easy. For example, in the case considered in Fig.
1, there is only one possible combination per
group. When m is larger, several combinations
can be formed in each group. This occurs, for
example, when m = 8. In this case, the OLS code
has a data block size k = 64. With eight positions
in each group, now two combinations of four of
them that share at most one position can be
formed. This means that the extended code will
have eight (4 × 2) additional data bits. As the size
of the OLS code becomes larger, the number of
combinations in a group also grows. For the case
m = 16 and k = 256, each group has 16

elements. Interestingly enough, there are 20
combinations of four elements that share at most
one element. In fact, those combinations are
obtained using the extended OLS code shown in
Fig. 1 in each of the groups. Therefore, in this
case, 4 × 20 = 80 data bits can be added in the
extended code.

An example for parity check matrix for triple
bit error correction can be shown as follows:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.17
107

Fig. 2. Parity check matrix H for the OLS

codes with k = 25 and t = 3.

The above parity check matrix consists of 25

data bits and 30 check bits. This matrix is having
6 one’s in each column thus, can correct up to 3
bit errors. This is a non symmetric code which
means that the number of data bits is not equal to
the number of check bits. It is a trivial task to
extend these types of OLS codes.

The overhead on the code word is very much
higher in case of the TEC codes when compared
to the DEC codes. As discussed before, the study
of methods to find the optimum set of
combinations that can be used to extend the code
in a general case is a complex mathematical
problem that is left for future work.

III. PROPOSED METHOD
Normally, all the words in the memory are not

error prone. Just a few words say 1 out of every
20 words is having an error. But using a simple
correction scheme we will be wasting the
processor clock cycles to correct a valid code
word. In this paper a method is presented to first
detect the presence of an error in the code word
using the syndrome fault detection. Later if any
error exists then it is sent to the correction unit
for further processing. After getting the output

of the correction unit, once again the syndrome

fault detection is performed to check for errors.
If we get an error at this stage then we simply ask
the transmitter to re transmit the word again as it
will not able to correct those errors.

Fig. 3. Graphical representation of the

proposed method.
The main idea of the proposed method is to
speed-up the detection process where ever
possible and also to save the power that might be
wasted for unnecessary correction cycles.

A. SYNDROME FAULT DETECTION
The syndrome of a particular code can be

formed by multiplying the received code with
the transpose of the parity check matrix. The
syndrome is independent of the transmitted code
but is dependent on the error pattern that might
have affected the code in the channel or in the
memory. After getting the syndrome vector,
check if all the bits in the vector are 0’s. If all are
0’s then there is no error present but if at least
one bit is 1 then the data needs to be corrected.

B. MAJORITY LOGIC DECODING
In this method, the parity check sum of each

bit in the received code vector is computed and
they are fed to a majority logic gate that will
decide whether the bit is in error or not.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.17
108

Fig. 4. Illustration of OS-MLD decoding for

OLS codes.
The above figure shows the OS-MLD

implementation for 0th bit of (32, 16) OLS code
that has been shown in Fig.1

IV. RESULTS
Three different implementations have been

simulated and dumped on to Virtex -4 FPGA kit
and the simulated outputs are verified using the
ChipScope tool. Fig.5 represents the simulation
results for (32,16) code which can be used to
correct up to 2 bit errors and also will be having
an message length of 16 bits and check length of
16 bits. Fig.6 represents the simulation results
for (55,25) code which can be used to correct up
to 3 bit errors and will have an message length of

25. Fig.7 is the result of extended OLS codes
having 16 check bits and 20 data bits. The main
important thing that we need to consider is the
hamming distance and valid code words of a
particular code. 88995 and 88a53 are two
messages that are encoded as 88995cf3a and
88a53cf3a respectively. Now say, if an error
pattern of 003c0000 occurred in 88995cf3a, then
that is transformed into 88a53cf3a, another valid
word by the corrector. Thus at this instant if we
check for an error we will feel the data is error
free, but the originality is different. That’s what
we can infer from the simulation results, this is
one case. There is another case of silent error
corruption before correction only we get a valid
code word which is not the original valid code
word. This is main disadvantage of many of the
decoding techniques that we use, as we cannot
differentiate between the errors that change one
valid code word into another.

By using the proposed method we can save the
processor clock cycles which we might be
wasting on unnecessary correction of code
words and also find out if the number of errors

that occurred are more than the number of errors
that a particular code can correct and ask for a
retransmission of the same if more errors occur.
The only exceptional case is that of the valid
code words which is discussed earlier. This
method can be used for both forward error
correcting and as well as ARQ schemes.

It can be observed that the data block sizes of
the extended codes are not a power of two. As in
many memory applications, the data block size is
a power of two; this may limit the use of the
extended OLS codes. However, in some specific
applications, word sizes that are not a power of
two are used and in those cases, the proposed
codes can be useful. The codes can also be used
when the memory is extended to incorporate
flags or tags as is the case in caches. For
example, in a cache with a 256-bit data line, the
extended DEC code

with m =16 can be used to support up to 80-tag
bits. This will

be more than enough for a 64-bit processor.
Another potential application is the protection of
content addressable memories (CAMs) and their
associated data.

V. CONCLUSION
In this brief, a method to detect errors in

extended OLS codes and correct them has been
proposed. The extended codes have the same
number of parity bits as the original OLS codes
but a larger number of data bits. Therefore, the
relative overhead is smaller. The extended OLS
codes are already hardware redundant in nature
and extra detection circuitry to the above makes
it more redundant. But looking on the brighter
side we have faster decoding of the code word
and these codes are simple to implement to a
certain level. New methods can be developed in
near future to extend the non-symmetric OLS
codes. And the derived codes can be decoded
using OS- MLD as the original OLS codes. The
decoding area and delay area are also similar.
Therefore, the new codes can be an interesting
option to reduce the number of parity bits
required to implement multiple bit error
correction in memories or caches. The proposed
method can be applied to any OLS code but in
some cases, obtaining the combinations to
extend the code is difficult. This can be
formalized as a mathematical problem that

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.17
109

involves the design of OS -MLD codes with
smaller data block sizes. The study of this
complex problem is left for future work. Most of
the codes derived in this brief are double ECCs
and few triple ECCs. The use of the method for

codes that can correct more than three errors will
be also addressed in future work. In any case, as
discussed in this brief, the proposed method is
expected to provide better benefits for double
ECCs

Fig. 5. Simulation results for the OLS codes with k = 16 and t = 2

Fig. 6. Simulation results for the OLS codes with k = 25 and t = 3.

Fig. 7. Extended OLS codes with k = 20, t = 3 and message = “88a53”

References

[1] Pedro Reviriego, Salvatore Pontarelli,
Alfonso Sánchez- Macián, and Juan Antonio

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.17
110

Maestro, “A Method to Extend Orthogonal Latin
Square Codes,” IEEE Transactions on very large
scale integration (VLSI) systems, vol. 22, NO. 7,
July 2014

[2] C. L. Chen and M. Y. Hsiao,
―Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,‖
IBM J.Res. Develop., vol. 28, no. 2, pp.
124–134, Mar. 1984.

[3] M. Y. Hsiao, ―A class of optimal
minimum odd-weight column SEC- DED
codes,‖ IBM J. Res. Develop., vol. 14, no. 4, pp.
395–301, Jul. 1970.

[4] A. Dutta and N. A. Touba, ―Multiple bit
upset tolerant memory using a selective cycle
avoidance based SEC-DED-DAEC code,‖ in
Proc. 25th IEEE VLSI Test Symp., May 2007,
pp. 349–354.

[5] R. Naseer and J. Draper, ―DEC ECC
design to improve memory reliability in sub-100
nm technologies,‖ in Proc. IEEE ICECS, Sep.
2008, pp. 586–589.

[6] G. C. Cardarilli, M. Ottavi, S. Pontarelli,
M. Re, and A. Salsano,

―Fault tolerant solid state mass memory for
space applications,‖ IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 4, pp. 1353–1372,
Oct. 2005.

[7] S. Liu, P. Reviriego, and J. A. Maestro,
―Efficient majority logic fault detection with
difference-set codes for memory applications,‖
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 20, no. 1, pp. 148– 156, Jan. 2012.

[8] P. Reviriego, M. Flanagan, S. Liu, and J.
A. Maestro, ―Multiple cell upset correction in
memories using difference set codes,‖ IEEE
Trans. Circuits Syst. I, Regular Papers, vol. 59,
no. 11, pp. 2592–2599, Nov. 2012.

[9] M. Y. Hsiao, D. C. Bossen, and R. T.
Chien, ―Orthogonal Latin square codes,‖ IBM
J. Res. Develop., vol. 14, no. 4, pp. 390–394, Jul.
1970.

[10] R. Datta and N. A. Touba, ―Generating
burst-error correcting codes from orthogonal
Latin square codes—A graph theoretic
approach,‖ in Proc. IEEE Int. Symp. DFT, 2011,
pp. 367–373.

[11] A. R. Alameldeen, Z. Chishti, C.
Wilkerson, W. Wu, and S.-L. Lu,

―Adaptive cache design to enable reliable

low-voltage operation,‖
IEEE Trans. Comput., vol. 60, no. 1, pp.

50–63, Jan. 2011.
[12] S. E. Lee, Y. S. Yang, G. S. Choi, W. Wu,

and R. Iyer, ―Low-power, resilient
interconnection with orthogonal Latin squares,‖
IEEE Design Test Comput., vol. 28, no. 2, pp.
30–39, Mar./Apr. 2011.

[13] J. Dénes and A. D. Keedwell, Latin
Squares and Their Applications. San Francisco,
CA, USA: Academic, 1974.

[14] C. McNairy and D. Soltis, ―Itanium 2
processor microarchitecture,‖

IEEE Micro, vol. 23 no. 2, pp. 44–55,
Mar./Apr. 2003.

[15] J. E. Stine, I. Castellanos, M. Wood, J.
Henson, F. Love, W. R. Davis,

P. D. Franzon, M. Bucher, S. Basavarajaiah, J.
Oh, and R. Jenkal,

―FreePDK: An open-source variation-aware
design kit,‖ in Proc. IEEE Int.

Conf. MSE, Jun. 2007, pp. 1
[16] H. Jaber, F. Monteiro, S. J. Piestrak, andA.

Dandache, “Design of parallel fault-secure
encoders for systematic cyclic block trans-
mission codes,” Microelectron. J., vol. 40, no.
12, pp. 1686–1697, Dec.2009.

[17]S. J.Piestrak,A. Dandache,and F.
Monteiro, “Designing fault-secure
parallelencoders forsystematic linearerror
correctingcodes,” IEEE

Trans.Reliab.,vol.52,no.4,pp.492–500,Apr.20
03. [18]J.A.Maestro,P.Reviriego,C.Argyrides,

andD.K.Pradhan,“Fault tolerant singleerror
correction

encoders,” J. Electron.Test.,
TheoryAppl.,vol.27,no.2,pp.215–218,Apr.2011.

