
 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017 

DOI:10.21276/ijcesr.2017.4.12.17  
105 

 
ERROR CORRECTION IN EXTENDED ORTHOGONAL LATIN 

SQUARE CODES USING SYNDROME FAULT DETECTION AND 
MAJORITY LOGIC DECODING  

Dr.Nikhil Raj 1, Dr. Om prakash2, Dr M. Thamarai3, Dr. Vaibhav A Meshram4, Dr.K. Srinivasulu5 
1,2,3,4,5Professor, Dept. of ECE,MRCE, Hyderabad  

 
Abstract: 

Error correction codes (ECCs) are 
commonly used to Protect memories from 
errors. As multi-bit errors become more 
frequent, single error correction codes are 
not enough and more advanced ECCs are 
needed. The use of advanced ECCs in 
memories is, however, limited by their 
decoding complexity. In this context, one-step 
majority logic decodable (OS-MLD) codes 
are an interesting option as the decoding is 
simple and can be implemented with low 
delay. Orthogonal Latin squares (OLS) codes 
are OS-MLD and have been recently 
considered to protect caches and memories. 
The main advantage of OLS codes is that they 
provide a wide range of choices for the block 
size and the  error correction capabilities. We 
can also extend these codes to accommodate 
more number of data bits thus reducing the 
overhead. But most of the time all the words 
in the memory are not error prone, but still 
we try to decode them and waste clock cycles 
on it. In this brief, a method is presented to 
detect whether an error is present in the code 
word and if present then only the correction  
is done using majority logic decoding. 

Keywords—Error correction codes 
(ECCs), Extended Orthogonal Latin squares, 
Syndrome fault detection (SFD), majority 
logic decoding, and memory. 
 

I. INTRODUCTION 
To mitigate errors, error correction codes 

(ECCs) are commonly used in memories [1]. 
Because of their simplicity, single error 
correction codes that can correct one bit per 

word are traditionally used [2]. Other codes that 
can also correct double adjacent errors [3] or 
double errors in general have also been studied 
[4]. Codes that can correct more errors have a 
larger impact on delay and power that can limit 
their applicability to memory designs [5]. One 
alternative to minimize those impacts is to use 
codes that are one-step majority logic decodable 
(OS- MLD). OS-MLD codes can be decoded 
with low latency and are, therefore, attractive to 
protect memories [6]. Several types of OS-MLD 
codes have been proposed for memory 
protection. One example is a type of Euclidean 
geometry (EG) codes studied in [7] and [8]. 

EG codes provide a limited number of block 
sizes and error correction capabilities. For 
example, for double error correction (DEC), 
only very small data block sizes (smaller than 16 
bits) can be implemented. In addition, the error 
correction capability for a block size is fixed and 
cannot be adapted to the error rate. Another type 
of code that is OSMLD is orthogonal Latin 
squares (OLS) code [11]. OLS codes can be 
implemented for a wide range of block sizes and 
error correction capabilities. This flexibility and 
the simple and fast decoding are the main 
advantages of OLS codes. However, OLS codes 
typically require more parity bits than other 
codes to correct the same number of errors. In 
some applications, this disadvantage is offset by 
their modularity and the simple and low delay 
decoding implementation (as OLS codes are 
OS-MLD). For example, OLS codes have been 
recently considered to protect memories [12], 
caches [13], and interconnections [14]. 

The rest of this brief is organized as follows. 
Section II provides an overview of OLS and 
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Extended OLS codes summarizing some of their 
properties that are used in the rest of this paper. 
Then, the proposed method for error detection 
and correction is presented in Section III. 
Section IV speaks of the results. Finally, the 
conclusions are presented in Section V. 

II. OLS and Extended OLS Codes 
A Latin square of size m is an m × m matrix 

that has permutations of the digits 0, 1, …, and m 
− 1 in both its rows and columns [15].Two Latin 
squares are said to be orthogonal if when they 
are superimposed every  ordered pair of 
elements appears only once. OLS codes are 
derived from OLS [11]. The block sizes for OLS 
codes are k = m2 data bits and 2 tm parity bits, 
where t is the number of errors that the code can 
correct and m is an integer. For a given  pair of 
values of t and m, the corresponding OLS code 
exists only if there are at least 2t OLS of size m. 

The extended codes have the same number of 
parity bits as the original OLS codes but a larger 
number of data bits. Therefore, the relative 
overhead is smaller. The derived codes can be 
decoded using OS-MLD as the original OLS 
codes. The decoding area and delay are also 
similar. Therefore, the new codes can be an 
interesting option to reduce the number of parity 
bits required to implement multiple bit error 
correction in memories or caches. 

 Fig. 1. H matrix for the extended OLS codes 
with k = 20 and t = 2. 

 
In the above figure, if we remove the extra 

added columns we get the Parity check matrix H 
for the OLS codes with codes k 

= 16 and t = 2. 

From the figure, we can infer that every 
column in the matrix is having exactly 4 one’s. 
Thus 4 parity checksums can be formed which 
can be majority decoded. Not all orthogonal 
Latin squares can be used as OLS-MLD codes; 
they need to satisfy 2 main conditions: 

1) Each data bit participates in exactly 2t 
parity check bits; 

2) Each other data bit participates in at most 
one of those parity check bits. 

For an arbitrary value of k = m2, the H matrix 
for a DEC OLS code is constructed as follows: 

 

   
where I4m is the identity matrix of size 4m and 

M1, M2, M3, and M 4 are the matrices of size m 
× m2 derived from OLS of size m × m. In a 
general case, for an OLS code that can correct t 
errors, the parity check matrix is constructed 
using 2t Mi matrices. 
When m is small finding, such combinations is 
easy. For example, in the case considered in Fig. 
1, there is only one possible combination per 
group. When m is larger, several combinations 
can be formed in each group. This occurs, for 
example, when m = 8. In this case, the OLS code 
has a data block size k = 64. With eight positions 
in each group, now two combinations of four of 
them that share at most one position can be 
formed. This means that the extended code will 
have eight (4 × 2) additional data bits. As the size 
of the OLS code becomes larger, the number of 
combinations in a group also grows. For the case 
m = 16 and k = 256, each group has 16 

elements. Interestingly enough, there are 20 
combinations of four elements that share at most 
one element. In fact, those combinations are 
obtained using the extended OLS code shown in 
Fig. 1 in each of the groups. Therefore, in this 
case,  4 × 20 = 80 data bits can be added in the 
extended code. 

An example for parity check matrix for triple 
bit error correction can be shown as follows: 
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Fig. 2. Parity check matrix H for the OLS 

codes with k = 25 and t = 3. 
 
The above parity check matrix consists of 25 

data bits and 30 check bits. This matrix is having 
6 one’s in each column thus, can correct up to 3 
bit errors. This is a non symmetric code which 
means that the number of data bits is not equal to 
the number of check bits. It is a trivial task to 
extend these types of OLS codes. 

The overhead on the code word is very much 
higher in case of the TEC codes when compared 
to the DEC codes. As discussed before, the study 
of methods to find the optimum set of 
combinations that can be used to extend the code 
in a general case is a complex mathematical 
problem that is left for future work. 

 
III. PROPOSED METHOD 
Normally, all the words in the memory are not 

error prone. Just a few words say 1 out of every 
20 words is having an error. But using a simple 
correction scheme we will  be wasting the 
processor clock cycles to correct a valid code 
word. In this paper a method is presented to first 
detect the presence of an error in the code word 
using the syndrome fault detection. Later if any 
error exists then it is sent to the correction unit 
for further processing. After getting the output 

  
of the correction unit, once again the syndrome 

fault detection is performed to check for errors. 
If we get an error at this stage then we simply ask 
the transmitter to re transmit the word again as it 
will not able to correct those errors. 

 

 
 
Fig. 3. Graphical representation of the 

proposed method. 
The main idea of the proposed method is to 
speed-up the detection process where ever 
possible and also to save the power that might be 
wasted for unnecessary correction cycles. 

A. SYNDROME FAULT DETECTION 
The syndrome of a particular code can be 

formed by multiplying the received code with 
the transpose of the parity check matrix. The 
syndrome is independent of the transmitted code 
but is dependent on the error pattern that might 
have affected the code in the channel or in the 
memory. After getting the syndrome vector, 
check if all the bits in the vector are 0’s. If all are 
0’s then there is no error present but if at  least 
one bit is 1 then the data needs to be corrected. 

B. MAJORITY LOGIC DECODING 
In this method, the parity check sum of each 

bit in the received code vector is computed and 
they are fed to a majority logic gate that will 
decide whether the bit is in error or not. 
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Fig. 4. Illustration of OS-MLD decoding for 

OLS codes. 
The above figure shows the OS-MLD 

implementation for 0th bit of (32, 16) OLS code 
that has been shown in Fig.1 

  
IV. RESULTS 
Three different implementations have been 

simulated and dumped on to Virtex -4 FPGA kit 
and the simulated outputs are verified using the 
ChipScope tool. Fig.5 represents the simulation 
results for (32,16) code which can be used to 
correct up to 2 bit errors and also will be having 
an message length of 16 bits and check length of 
16 bits. Fig.6 represents the simulation results 
for (55,25) code which can be used to correct up 
to 3 bit errors and will have an message length of 

25. Fig.7 is the result of extended OLS codes 
having 16 check bits and 20 data bits. The main 
important thing that we need to consider is the 
hamming distance and valid code words of a 
particular code. 88995 and 88a53 are two 
messages that are encoded as 88995cf3a and 
88a53cf3a respectively. Now say,  if an error 
pattern of 003c0000 occurred in 88995cf3a, then 
that is transformed into 88a53cf3a, another valid 
word by the corrector. Thus at this instant if we 
check for an error we will feel the data is error 
free, but the originality is different. That’s what 
we can infer from the simulation results, this is 
one case. There is another case of silent error 
corruption before correction only we get a valid 
code word which is not the original valid code 
word. This is main disadvantage of many of the 
decoding techniques that we use, as we cannot 
differentiate between the errors that change one 
valid code word into another. 

By using the proposed method we can save the  
processor clock cycles which we might be 
wasting on unnecessary correction of code 
words and also find out if the number of errors 

that occurred are more than the number of errors 
that a particular code can correct and ask for a 
retransmission of the same if more errors occur. 
The only exceptional case is that of the valid 
code words which is discussed earlier. This 
method can be used for both forward error 
correcting and as well as ARQ schemes. 

It can be observed that the data block sizes of 
the extended codes are not a power of two. As in 
many memory applications, the data block size is 
a power of two; this may limit the use of the 
extended OLS codes. However, in some specific 
applications, word sizes that are not a power of 
two are used and in those cases, the proposed 
codes can be useful. The codes can also be used 
when the memory is extended to incorporate 
flags or tags as is the case in caches. For 
example, in a cache with a 256-bit data line, the 
extended DEC code 

with m =16 can be used to support up to 80-tag 
bits. This will 

be more than enough for a 64-bit processor. 
Another potential application is the protection of 
content addressable memories (CAMs) and their 
associated data. 

V. CONCLUSION 
In this brief, a method to detect errors in 

extended OLS codes and correct them has been 
proposed. The extended codes have the same 
number of parity bits as the original OLS codes 
but a larger number of data bits. Therefore, the 
relative overhead is smaller. The extended OLS 
codes are already hardware redundant in nature 
and extra detection circuitry to the above makes 
it more redundant. But looking on the brighter 
side we have faster decoding of the code word 
and these codes are simple to implement to a 
certain level. New methods can be developed in 
near future to extend the non-symmetric OLS 
codes. And the derived codes can be decoded 
using OS- MLD as the original OLS codes. The 
decoding area and delay area are also similar. 
Therefore, the new codes can be an interesting 
option to reduce the number of parity bits 
required to implement multiple bit error 
correction in memories or caches. The proposed 
method can be applied to any OLS code but in 
some cases, obtaining the combinations to 
extend the code is difficult. This can be 
formalized as a mathematical problem that 
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involves the design of OS -MLD codes with 
smaller data block sizes. The study of this 
complex problem is left for future work. Most of 
the codes derived in this brief are double ECCs 
and few triple ECCs. The use of the method for 

codes that can correct more than three errors will 
be also addressed in future work. In any case, as 
discussed in this brief, the proposed method is 
expected to provide better benefits for double 
ECCs 

 
Fig. 5. Simulation results for the OLS codes with k = 16 and t = 2 

 
Fig. 6. Simulation results for the OLS codes with k = 25 and t = 3. 

 
Fig. 7. Extended OLS codes with k = 20, t = 3 and message = “88a53” 
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